segunda-feira, setembro 26, 2022
HomeNaturezaFemtosecond laser writing of lithium niobate ferroelectric nanodomains

Femtosecond laser writing of lithium niobate ferroelectric nanodomains


  • Zhu, D. et al. Built-in photonics on thin-film lithium niobate. Adv. Decide. Photon. 13, 242–352 (2021).

    Article 

    Google Scholar
     

  • Solar, D. H. et al. Microstructure and area engineering of lithium niobate crystal movies for built-in photonic purposes. Gentle Sci. Appl. 9, 197 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, C. et al. Built-in lithium niobate electro-optic modulators working at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He, M. B. et al. Excessive-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and past. Nat. Photon. 13, 359–365 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb era in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pohl, D. et al. An built-in broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bartnick, M. et al. Cryogenic second-harmonic era in periodically poled lithium niobate waveguides. Phys. Rev. Appl. 15, 024028 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhu, S. N., Zhu, Y. Y. & Ming, N. B. Quasi–phase-matched third-harmonic era in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ellenbogen, T., Noa, V. B., Ayelet, G. P. & Arie, A. Nonlinear era and manipulation of Ethereal beams. Nat. Photon. 3, 395–398 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yuan, S. et al. Strongly enhanced second harmonic era in a skinny movie lithium niobate heterostructure cavity. Phys. Rev. Lett. 127, 153901 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Diffraction much less and strongly confined floor acoustic waves in area inverted LiNbO3 superlattices. Appl. Phys. Lett. 98, 233504 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yin, R. C., Yu, S. Y., He, C., Lu, M. H. & Chen, Y. F. Bulk acoustic wave delay line in acoustic superlattice. Appl. Phys. Lett. 97, 092905 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Floor acoustic wave era in zx-cut LiNbO3 superlattices utilizing coplanar electrodes. Appl. Phys. Lett. 95, 052901 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. Q. et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meier, D. & Selbach, S. M. Ferroelectric area partitions for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nat. Photon. 1, 459–462 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jia, Ok. P. et al. Midinfrared tunable laser with noncritical frequency matching in field resonator geometry. Phys. Rev. Lett. 127, 213902 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma, P. et al. Nonvolatile ferroelectric area wall reminiscence. Sci. Adv. 3, 1700512 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Marpaung, D., Yao, J. P. & Capmany, J. Built-in microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jin, H. et al. On-chip era and manipulation of entangled photons primarily based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solntsev, A. S. et al. Technology of nonclassical biphoton states by way of cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007 (2014).


    Google Scholar
     

  • Saravi, S., Pertsch, T. & Setzpfandt, F. Lithium niobate on insulator: An rising platform for built-in quantum photonics. Adv. Decide. Mater. 9, 2100789 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, J., Ma, C., Rusing, M. & Mookherjea, S. Prime quality entangled photon pair era in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett. 124, 163603 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lehr, D. et al. Enhancing second harmonic era in gold nanoring resonators stuffed with lithium niobate. Nano Lett. 15, 1025–1030 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. Excessive-Q lithium niobate microdisk resonators on a chip for environment friendly electro-optic modulation. Decide. Specific 23, 23072–23078 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shur, V. Y., Akhmatkhanov, A. R. & Baturin, I. S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Lett. 2, 040604 (2015).


    Google Scholar
     

  • Ying, C. Y. J. et al. Gentle-mediated ferroelectric area engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev. 6, 526–548 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Solar, J., Hao, Y. X., Zhang, L., Xu, J. J. & Zhu, S. N. Transient overview of lithium niobate crystal and its purposes. J. Synth. Cryst. 49, 947–964 (2020).

    CAS 

    Google Scholar
     

  • Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between mild waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cao, B. et al. Environment friendly era of ultra-broadband parametric fluorescence utilizing chirped quasi-phase-matched waveguide gadgets. Decide. Specific 29, 21615–21628 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yudistira, D., Janner, D., Benchabane, S. & Pruneri, V. Low energy consumption built-in acoustooptic filter in area inverted LiNbO3 superlattice. Decide. Specific 18, 27181–27190 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y. & Molotskii, M. Submicron ferroelectric area buildings tailor-made by high-voltage scanning probe microscopy. Appl. Phys. Lett. 82, 103–105 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yamada, M. & Kishima, Ok. Fabrication of periodically reversed area construction for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electron. Lett. 27, 828–829 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shur, V. Y. Area nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals. Ferroelectrics 373, 1–10 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shur, V. Y. et al. Self-assembled form evolution of the area wall and formation of nanodomain wall traces induced by a number of IR laser pulse irradiation in lithium niobate. J. Appl. Phys. 127, 094103 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shur, V. Y. et al. Dimensionality enhance of ferroelectric area form by pulse laser irradiation. Acta Mater. 219, 117270 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rodenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photon. 13, 105–109 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in clear supplies. Nat. Photon. 2, 219–225 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a clear medium. Nat. Photon. 14, 82–88 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 12, 596–601 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, T. X. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon. 12, 591–595 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, X. et al. Ferroelectric area engineering by centered infrared femtosecond pulses. Appl. Phys. Lett. 107, 141102 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Imbrock, J., Hanafi, H., Ayoub, M. & Denz, C. Native area inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Appl. Phys. Lett. 113, 252901 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Sheng, Y., Zhu, S. N., Xiao, M. & Krolikowski, W. Nonlinear photonic crystals: from 2D to 3D. Optica 8, 372–381 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Zhu, B., Liu, H., Chen, Y. & Chen, X. Excessive conversion effectivity second-harmonic beam shaping through amplitude-type nonlinear photonic crystals. Decide. Lett. 45, 220–223 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Steigerwald, H., Dice, F. V., Luedtke, F., Dierolf, V. & Buse, Ok. Affect of warmth and UV mild on the coercive discipline of lithium niobate crystals. Appl. Phys. B 101, 535–539 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Saltiel, S. M. et al. Nonlinear diffraction from a digital beam. Phys. Rev. Lett. 104, 083902 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bhatt, R. et al. Research on nonlinear optical properties of ferroelectric MgO-LiNbO3 single crystals. Ferroelectrics 323, 165–169 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Reddy, J. N. B., Elizabeth, S., Bhat, H. L., Venkatram, N. & Rao, D. N. Affect of non-stoichiometric defects on nonlinear absorption and refraction in Nd:Zn co-doped lithium niobate. Decide. Mater. 31, 1022–1026 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Maekawa, S. et al. in Physics of Transition Steel Oxides (eds Cardona, M. et al.) 323–331 (Springer, 2004).

  • Ashcroft, N. W. & Mermin, N. D. in Strong State Physics (ed. Crane, D. G.) 253–258 (Harcourt School, 1976).

  • Kosorotov, V. F., Kremenchugskij, L. S., Levash, L. V. & Shchedrina, L. V. Tertiary pyroelectric impact in lithium niobate and lithium tantalate crystals. Ferroelectrics 70, 27–37 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Bo, H. F. et al. Temperature-dependent ferroelectric properties of close to stoichiometric lithium niobate single crystal. Appl. Phys. A 124, 691 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Fridkin, V. M. & Ducharme, S. Common options of the intrinsic ferroelectric coercive discipline. Phys. Strong State 43, 1320–1324 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ishizuki, H., Shoji, I. & Taira, T. Periodical poling traits of congruent MgO:LiNbO3 crystals at elevated temperature. Appl. Phys. Lett. 82, 4062–4064 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, W. H. Binary computer-generated holograms. Appl. Decide. 18, 3661–3669 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shapira, A., Shiloh, R., Juwiler, I. & Arie, A. Two-dimensional nonlinear beam shaping. Decide. Lett. 37, 2136–2138 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Decide. 5, 1550–1567 (1966).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soergel, E. Piezoresponse pressure microscopy (PFM). J. Phys. D 44, 464003 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sheng, Y. et al. Three-dimensional ferroelectric area visualization by Čerenkov-type second harmonic era. Decide. Specific 18, 16539–16545 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, X. Y. et al. Second-harmonic interference imaging of ferroelectric domains by way of a scanning microscope. J. Phys. D 50, 485105 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. Y., Chen, Y. F., Zhu, S. N., Qin, Y. Q. & Ming, N. B. Acoustic superlattices and ultrasonic waves excited by crossed-field scheme. Mater. Lett. 28, 503–505 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Anhorn, M., Engan, H. E. & Ronnekleiv, A. New noticed velocity measurements on y-cut LiNbO3. In IEEE 1987 Ultrasonics Symposium (ed. McAvoy, B. R.) 279–284 (IEEE, 1987).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments