Broecker, W. The Nice Ocean Conveyor: Discovering the Set off for Abrupt Local weather Change (Princeton Univ. Press, 2010).
Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Previous to Current (Cambridge Univ. Press, 2019).This e book offers a evaluate of carbon contained in the Earth, together with its portions, actions, kinds, origins, modifications over time and impacts on planetary processes.
Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its impact on atmospheric carbon dioxide over the previous 100 million years. Am. J. Sci. 283, 641–683 (1983).
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).
Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth floor temperature from late Neoproterozoic to current day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for international common floor temperature, atmospheric CO2 focus and predictions of field fashions of the long-term carbon cycle.
Werner, C. et al. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).
Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).
Garrels, R. M. & MacKenzie, F. T. A quantitative mannequin for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, largely comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This evaluate summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be effectively recycled from the slab and probably saved within the arc lithosphere.
Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).
Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A evaluate of the present-day processes and fluxes concerned in subducting and recycling carbon.
Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).
Bekaert, D. et al. Subduction-driven risky recycling: a worldwide mass steadiness. Ann. Rev. Earth Sci. 49, 37–70 (2021). This evaluate offers an outline of Earth’s risky stock and the mechanisms by which volatiles are transferred between Earth reservoirs via subduction.
Wong, Okay. et al. Deep carbon biking over the previous 200 million years: a evaluate of fluxes in numerous tectonic settings. Entrance. Earth Sci. 7, 263 (2019).
Müller, R. D. et al. A worldwide plate mannequin together with lithospheric deformation alongside main rifts and orogens for the reason that Triassic. Tectonics 38, 1884–1907 (2019). A worldwide plate tectonic mannequin for the Mesozoic and Cenozoic eras, together with the evolution of plate boundaries and plate deformation alongside rifts and orogens, which kinds the tectonic foundation for computing carbon fluxes via time.
Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate within the international ocean for the reason that Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a mannequin for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction via time.
Gillis, Okay. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling information are used to mannequin how the precipitation of carbonate minerals in hydrothermally altered ocean crust relies on crustal age and bottom-water temperature.
Clift, P. D. A revised price range for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).
Faccenda, M. Water within the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical fashions, along with geological and geophysical observations, reveal how slab bending throughout subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.
Nationwide Geophysical Knowledge Middle/World Knowledge Service (NGDC/WDS). NCEI/WDS International Vital Earthquake Database (NOAA Nationwide Facilities for Environmental Info, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K
Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake places within the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A evaluate of the parameters controlling the tectonic accretion and erosion of sediments alongside subduction zones.
Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).
Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted higher oceanic lithosphere for the previous 320 Ma. Entrance. Earth Sci. 7, 332 (2019). A mannequin explaining how seafloor spreading charges have ruled the storage and subduction of serpentinite within the oceanic lithosphere via time.
Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gasoline contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).
Le Voyer, M., Kelley, Okay. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content material from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).
Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).
Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).
Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion construction defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Stable Earth 103, 9857–9866 (1998).
Cannat, M., Fontaine, F. & Escartin, J. in Range of Hydrothermal Programs on Gradual Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).
Alt, J. C. & Teagle, D. A. H. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
Hay, W. W. in Coccolithophores—From Molecular Processes to International Affect (eds Thierstein, H. R. & Younger, J. R.) 509–528 (Springer, 2004).
Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Particular Publication No. 21, 1986).
Connolly, J. A. D. The geodynamic equation of state: what and the way. Geochem. Geophys. Geosyst. 10, Q10014 (2009).
Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Perception from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).
Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage within the altered oceanic crust: outcomes from ODP/IODP Gap 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).
Alt, J. C. et al. The position of serpentinites in biking of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).
Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon launch from serpentinite-hosted carbonates throughout dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).
Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001). The authors use part equilibria to quantify the evolution of CO2 and water via subduction zone metamorphism of deep-sea carbonates, that are a serious supply for carbon launched by arc volcanoes.
Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs vitality minimization and implications for subduction zone mass switch. Earth Planet. Sci. Lett. 501, 90–102 (2018).
Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and risky recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).
Ague, J. J. & Nicolescu, S. Carbon dioxide launched from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).
Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).
Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).
Grassi, D., Schmidt, M. W. & Günther, D. Aspect partitioning throughout carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature within the EM mantle parts. Earth Planet. Sci. Lett. 327, 84–96 (2012).
Solar, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).
East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction historical past reveals Cretaceous slab superflux as a doable trigger for the mid-Cretaceous plume pulse and superswell occasions. Gondwana Res. 79, 125–139 (2020).
Safonova, I., Litasov, Okay. & Maruyama, S. Triggers and sources of volatile-bearing plumes within the mantle transition zone. Geosci. Entrance. 6, 679–685 (2015).
Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).
Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous large igneous occasion in japanese China. Earth Planet. Sci. Lett. 233, 103–119 (2005).
Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism within the South China Block. Earth Sci. Rev. 217, 103605 (2021).
Pepper, M. B. Magmatic historical past and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in trendy rivers. Geosphere 12, 1532–1555 (2014).
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the proof. Components 11, 91–98 (2015).
Li, Okay., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions point out altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).
Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Components 15, 377–380 (2019).
Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for international kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).
Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites associated to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals within the cool inside of the subducting plate over giant distances from the ditch and eventual partial melting of those minerals can drive diamond formation.
Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Extremely saline fluids from a subducting slab because the supply for fluid-rich diamonds. Nature 524, 339–342 (2015).
Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from supply to floor: insights from experiments. Components 15, 393–398 (2019).
Tappe, S., Good, Okay., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep risky cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
Spandler, C. & Pirard, C. Aspect recycling from subducting slabs to arc crust: a evaluate. Lithos 170, 208–223 (2013).
Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold supply. Ore Geol. Rev. 127, 103829 (2020).
Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The position of carbon dioxide within the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).
Haas, J. R., Shock, E. L. & Sassani, D. C. Uncommon earth parts in hydrothermal techniques: estimates of ordinary partial molal thermodynamic properties of aqueous complexes of the uncommon earth parts at excessive pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).
Phillips, G. N. & Evans, Okay. A. Function of CO2 within the formation of gold deposits. Nature 429, 860–863 (2004).
Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle suggestions loops concerned in the entire Earth-system evolution and local weather change.
Berner, R. A. A mannequin for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).
Berner, R. A. GEOCARBSULF: a mixed mannequin for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved mannequin of biogeochemical biking over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
Krissansen-Totton, J. & Catling, D. C. Constraining local weather sensitivity and continental versus seafloor weathering utilizing an inverse geological carbon cycle mannequin. Nat. Commun. 8, 15423 (2017).
Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle fashions. Gondwana Res. 97, 176–203 (2021).
Wilkinson, B. H. & Walker, J. C. Phanerozoic biking of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).
Caldeira, Okay. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This writer acknowledged that the gradual shift of carbonate deposition from continental to pelagic settings will need to have elevated the subduction of carbonates and their metamorphic decarbonation, leading to a Cenozoic enhance in CO2 degassing from volcanic arcs.
Foster, G. L., Royer, D. L. & Lunt, D. J. Future local weather forcing probably with out precedent within the final 420 million years. Nat. Commun. 8, 14845 (2017).
Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 development over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).
Gernon, T. et al. International chemical weathering dominated by continental arcs for the reason that mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).
McKenzie, N. R. et al. Continental arc volcanism because the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).
Pall, J. et al. The affect of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 for the reason that Devonian. 14, 857–870 (2018).
Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc exercise since 750 Ma: a worldwide compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).
Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution throughout two supercontinent cycles. International Planet. Change 173, 1–14 (2019).
Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle on the geological timescale? Relative significance of palaeogeography versus strong Earth degassing price within the Phanerozoic climatic evolution. Geol. Magazine. 156, 355–365 (2019).
Farnsworth, A. et al. Local weather sensitivity on geological timescales managed by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, Okay. Traits, rhythms, and aberrations in international local weather 65 Ma to current. Science 292, 686–693 (2001).
Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).
Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).
Caves Rugenstein, J. Okay., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling pushed by land floor reactivity slightly than elevated weathering fluxes. Nature 571, 99–102 (2019).
Misra, S. & Froelich, P. N. Lithium isotope historical past of Cenozoic seawater: modifications in silicate weathering and reverse weathering. Science 335, 818–823 (2012).
Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).
Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).
Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic international cooling and elevated seawater Mg/Ca by way of decreased reverse weathering. Nat. Commun. 8, 844 (2017).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary local weather. Nature 560, 471–475 (2018).
Seton, M. et al. International continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
Brune, S., Williams, S. E. & Müller, R. D. Potential hyperlinks between continental rifting, CO2 degassing and local weather change via time. Nat. Geosci. 10, 941–946 (2017).
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a worldwide set of kinematically outlined subduction-zone segments offers insights into the sources of fluid and soften.
Lunt, D. J. et al. DeepMIP: mannequin intercomparison of early Eocene climatic optimum (EECO) large-scale local weather options and comparability with proxy information. Clim. Previous Talk about. 17, 203–227 (2021).
Steinthorsdottir, M. et al. The Miocene: the way forward for the previous. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).
Penman, D. E., Rugenstein, J. Okay. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a suggestions and forcing in Earth’s local weather and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the efficiency of previous local weather mannequin projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).